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Abstract

We report here some new results we have obtained for the

diagonal element of the second-order density matrix (pair function)

and for the momentum distribution of an interacting electron gas.

In the low density limit, the pair function has been discussed

previously by March and Young (1959) and it is shown here that,

to a similar degree of approximation, the first-order density

matrix and hence the momentum distribution may be obtained. In

the high-density problem, the pair function. has also been

calculated using the Green's function approach and this result

complements the calculation of the momentum distribution carried

out recently by Daniel and Vosko (1960). From the information

thus available in these high and low density limits, the range

of usefulness of the concept of the Fermi surface in an

interacting electron gas is discussed.

Also, results of variational calculations on the stability

of Overhauser spin-density waves in metals are reported. It is

concluded that such waves reduce the energy below the Hartree-

Fock value only when the interaction becomes very strong, or

equivalently when the density is very low.

Some preliminary work on the correlation problem in a

non-uniform electron gas is also briefly discussed.
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1. Introduction

As we discussed in ASR No. 1, the problem of dealing with

the Coulomb interactions between conduction ,electrons in metals

has pro-.d very formidable and no complete solution has, as

yet, been found. In recent years, beginning with the important

investigation of Macke (1950), attention has been focused

primarily on the use of perturbation theory. Unfortunately, the

perturbation expansion does not prove useful in practice in the

range of real metallic densities, which are characterized by the

usual gas parameter rs lying in the range 2 < rs < 5.5.

As we emphasized in ASR No. 1, in attempting to understand

the correlation problem, it is often useful to consider a wider

range of densities than that represented above, and in particular

to consider the formal limiting cases rs -+ 0 and rs -+ O'. The

first case represents the domain of perturbation theory based

on plane waves, but the second case has been less fully discussed.

For this reason, we have extended the earlier work by March and

Young (1959) on the diagonal element of the second-order matrix

(pair function) and have thereby obtained the first-order density

matrix and momentum distribution in this limit of low density.

The results of this calculation are reported in §3 after a brief

summary of the results of the Hartree-Fock approximation in @2.

In §4, the other extreme limit of high density is discussed. In

order to facilitate the calculations in this limit, a generalization

of the concept of density matrices proves desirable as we
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emphasized in §2 of ASR No. 1. The appropriate tools are then

found to be the first and second-order Green's functions

familiar to field theorists. A calculation is reported which

yields the pair function in the high-density limit: uniform

application of. this same method leads, in addition, to results

in agreement with those of Daniel and Vosko (1960) for the

momentum distribution. By analysis of these limiting forms

for high and low density it is shown in §5 that information may

be obtained on the range of usefulness of the concept of a Fermi

surface in metals.

In §6 we report the final results of a variational

calculation carried out by one of us (N.H.M.) in conjunction

with M. I. Darby and W. H. Young. This was designed to examine

the stability of Overhauser spin-density waves in metals. The

results provides strong evidence that such waves are only

energetically favoured for very strong interactions, or

equivalently, for very low densities. They appear therefore

to have no relevance to the correlation problem for real metallic

densities.

Finally, in §7, we report some preliminary findings on the

proton lattice, in both high and low density limits.

2. Hartree-Fock Pair function and first-order density matrix

We briefly recall here that our problem is basically to

calculate the gnvund state wave function *(Ai !2 ... 4) for
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a system of N electrons, where ki denotes the space co-ordinates

Zi and the spin co-ordinates oi, from the Schr~dinger equation

H*= 6 (2.1)

where the Hamiltonian H is given in full in equation (2.1) of

ASR No.1. As stressed in that report, it is often both convenient,

or more important, conceptually very fruitful, to work with first

and second-order spinless density matrices y(r_, 'r) and

r(rj'2'rIr 2 ) defined by the equations

y(Zir__) = N /**(ZIo C2...XN)*(Z_1 P42 . . . d x-44 (2.2)

r(rl '_ r, Z2) N(N - 1) /*Z 0r202300 -N'(l 22j= 21 f,(i' o ' ax..)w( o ox.)

do do2 dX3 ... d_ (2.3)

We note now that the diagonal elements of y and r have direct

physical interpretations. Thus y(rI Zl) gives the particle

density which in the Sommerfeld model is simply the constant

3/4Crs3 , while r(ZI_2'lr2) is effectively the probability of

electron separation or the pair distribution function. Then,

as Mayer (1955) was the first to show, the energy per particle

61/N is given by

FE - (p'r) - I (r))4 dr. (2.4)
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where F(4) = F(Ir' - pl) is the pair function, normalized to unity

for large Ij' -rl .

When the total wave function is a determinant of plane waves,

we have the usual Hartree-Fock forms

k f3 Jj~kfjE' - Ej) )p
y(Z'r) = k .- 1) " i(p) = (sin p - p cos p)/p (2.5)

2

=(.1 - 2' 1) 1 (2.6)Skfl r -,

where kf is the magnitude of the wave vector at the Fermi surface

and is related to'the mean interparticle spacing by

kf rs = . (2.7)

Using atomic units, it follows from (2.5) and (2.6) that the energy

per particle is

e = - /90 1 -(2.8)

3. Pair function and first-order matrix in low-density limit

The low-density form of the pair function has been discussed

earlier by March and Young (1959) using the electron lattice model

of Wigner (1938). We simply summarize the results by saying that

as rs becomes very large, the electrons relative to a given particle

we have singled out, and placed at the origin of co-ordinates sit
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on the sites of a body-centred cubic lattice. As r8 is then

reduced somewhat, the electrons can be thought of as represented

by harmonic oscillator functions

( exp - ; c=r s  . (3.1)

The results obtained by March and Young (1959) for the pair function

are represented in curves I and 2 of Fig. 1, for cases r8 = 100

and ra = 4. For comparison, the Fermi hole result given in (2.6)

is also shown in curve 3. We emphasize that while curve I should

be reliable, curve 2 represents an extrapolation beyond the range

of validity of the low density form (3.1), and is given solely to

show the qunditative influence of varying rs.

We shall now indicate how this work may be generalized to

yield the first-order density matrix and momentum distribution for

a low-density gas. From the orbitals (3.1), centred on each

lattice site, we build a Dirac density matrix. This will not, of

course, contain the condition of translational invariance, that is

the diagonal element will not be a constant. To obtain a result

consistent with the Sommerfeld model we must average over all

positions, and then the desired first-order density matrix is

easily shown to be

k 3
y(Z') =f /x,1

= - r- r (3.2)

The form (3.2), as is easily seen, satisfies all the essential

conditions, but its range of validity is, of course, restricted,
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as we shall discuss below. Nevertheless, in conjunction with the

high density results of §4, it may be used to draw some interesting

conclusions about the Fermi surface (see 5).

At this stage, it is enlightening to examine the momentum

distribution corresponding to the first-order matrix (3.2), and

this may be found as follows' We require the occupation numbers

P(k) of pl&ne wave states V-4 e4k - , where V is the volume of the

metal and thus we write

y(~)= 1 P(1L)e-ik~1i k (.3

k

or remembering that the density of states in k space is (1/8% 3 )V

and using Bauer's expansion for a plane wave as a series of

spherical waves:

k) I o sin kIr' - 04%k2 dk. (3.4)
Y(-'E) = U__________

It is convenient at this point to measure k in units of the Fermi

momentum kf, that is we write K = k/kf, and then (3.4) becomes

k(fI i) = :- P(K) 1 K2 dK. (3.5)

Inert% t et k K ' - r I

Inverting this relation and using (3.2) for yr~r) we find

PMK = x r- 2 (3.6)
ex 4)r 8 )



where we have eliminated k f using (2.7). As we have remarked

earlier, the range of validity of (3.6) is restricted, because

the orbitals * on different lattice sites havq been assumed

orthogonal, whereas this is only rigorously true in the limit

r- 0" However, a rough estimate of the range of validity may

be obtained by noting that the occupation numbers P(K) must always

lie between 0 and 1. Since P(K) as given by (3.6) has its

maximum at K = 0, we must have that

< I(3.7)
r
s8

or r8 > 9"3.

The kinetic energy per particle, in the approximation implied by

(3.6) is easily shown to be

f =(3.8)

in agreement with Wigner (1938). La-er treatments based on more

careful study of the dynamics of the vibrating electron lattice

(Coldwell-Horsfall and Maradudin, 1960; Carr, 1961) change (3.8)

somewhat, but will not affect the overall validity of the argument

presented above. We note finally for the low-density limit,

that the momentum distribution is of classical 'Maxwell-Boltzmarm'

form: this is in sharp contrast to the high density results to

which we now turn.
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4. Pair function and first-order density matrix in high-density

limit

Using the perturbation theory of Gell-Mann and BrXeckner

(1957) in suitable form, we shall now discuss the way in which the

pair function and the first-order density matrix develop from the

Hartree-Fock forms given in r2, equations (2.6) and (2.5). In

order to do so. it is very convenient to introduce a generalization

of density matrices to include also the time:, this will greatly

facilitate the setting up of useful equations from which the

matrices can be determined. We discussed this situation fully

in §2(iii) of ASR No. I, where we pointed out that the first and

second order Green's functions constitute the desired generalizations

of the density matrices. In fact, equations (2.38) and (2.39) of

ASR No. I give the explicit relations between the Green's functions

and the density matrices. The basic equation for the second-order

Green's function (see (2.35) of ASR No. 1) may be written in the form

G(xx 2x3x4 ) = G(xIx 3 )G(x2x4 ) - G(xlx4)G(x 2x 3 )

+ d4y, d4 y2 d4 z, d4z 2 G(xIy,)G(X2Y2)I(yY 2 ZlZ 2 )G(zIZ 2X3X4. )

(4-1)

In the high density limit it now appears possible to make progress

in the electron gas problem by inserting the first approximation

for G(xx 2 x3 x4) inside the integral, provided we approximate

sufficiently carefully to the interaction operator. The procedure

to be adopted was outlined in 4(iii) of ASR No. 1, and we have



now carried through the calculations in detail, as described below.

The basic equations of the treatment we shall employ are (4.25) and

(4.26) of ASR No. 1. The method used is to seek the Fourier

transform of the two-particle Green's functiol, which is closely related

to the second order density matrix (see (2.39) of ASR No. 1).

We therefore write the interaction

v(r) = 2!= 7' v(k) eik~r (4.2)

and then it follows that

v(k) = (43)

Furthermore we develop Go(rt), which enters the Green's function

equation for the two-spin case, namely,

G(Ztp'trt"rt " ) = Go(Rt rt")Go(_ 't 't") - Go(j tt")Go(p'tjt")

- J d 4 y, d4 Y2 Go(Ety, )Go(P-'ty 2 )V(y1 -Y2 )Go(y,1 t")Go(Y 2 't")

+j Y /1Y G' d'2O(rty,)GO(_r'tY2)V(YI-Y2)Go(yip:'t")Go(Y2Tt"),

(4.4)

in the form

Go(rt) -- f Go(ke)ei(k.r 6t) dC

k -(

G ockt)e i '  (4.5)
k
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After some calculation it may then be shown that

Go(kt) = - ie-ik2 /2 t t < 0 k > 0

=ie-ik 2/2 t t> k>
(4.6)

=0 t<0 k->

t>0 k<I

Also it is known that equation (4.25) of ASR No. I for the

modified interaction V may be solved b6y Fourier analysis, and

writing

V(yl-Y 2 ) j v(qw) e i q (r - r 2 ) - i ( t - t 2 ) dw (4.7)

k

the solution is

v(q() 2ar (4.8)q2[1 + = 9I ( )]Q

where

Qo(qk) = k - (q/2 + q.k) + i8 - W + (e12 + q.k)+i6"

Ik+ql>l (4.9)

This latter function Qo(qw) has been discussed earlier by DuBois

(1959).

If we now denote the correction to the Hartree-Fock result for

G(rt r't rt" rt") by Gbg then we may write



Gbg(rt r't, rt" r't") =a e'iq(r - r) Gbg~qo t _ ta)

'= d4 y, d4 y 2 Go(rt, Yi) Go(r't Y2) V(Y1-4 2 ) Go(rlrt")Go(r2r't " )

- fdk de dk' del dq do) eiq(r-rf) -i(e+6')(t'- t")

x G0.(k) Go(k - q, e - w) v(qw) (4.10)

If we let t" - t+ at this stage we obtain

Gbg (q) ,-72y~ 6 k dE dk' del dw G00(lc) GO(k - q9 E - cw)

v(qw) O(k'6') Go(k' + q, 6' + w)

= -(2~' JQ.2(qW) V(qw) do). (.

Substituting for v(qw) we obtain the final result

Gbg(q) = - d) Q0 2(qW) a rs/X2 q2  (4.12)
f ' 1+ (ar /IE2 q1) QD (qW)

Further progress calls for the use ,of numerical methods and this

aspect of the work is now being planned,

5. The Meaning of a Fermi surface

The fact that we can obtain the momentum distribution in two

limiting cases has interesting implications. For, as the work

of Daniel and Vosko has shown, the discontinuity in P(K) at the
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Fermi surface for rs = 0 is not removed but only reduced as the

density is lowered. While this result seems not to have been

established rigorously outside perturbation theory, there seems

strong empirical evidence from the sharpness of the Fermi surface

in real metals that such a discontinuity does in fact persist.

However, our low density treatment rs -+ could equally well be

made the basis of a perturbation treatment, and no sign of the

discontinuity would then occur. Thus, the evidence seems clear

that as we follow the momentum distribution as it develops from

the two limiting cases of small and large r. there must come a

critical coupling strength, or a critical density, at which the

discontinuity in the momentum distribution is reduced to zero.

For lower densities, it then appears that the concept of a Fermi

surface will no longer be useful. We believe at present that the

critical value, rc say, will lie outside the range of real metallic

densities, or in other words that rc will exceed 5"5. No

quantitative evaluation has so far proved possible however.

Questions also remain as to the nature and order of the 'transition'

occurring at rc.  We do not expect that the pair function will

undergo any marked changes at rc and probably, to obtain a clear

picture of the transition, it will eventually prove necessary to

examine the third and higher-order density matrices.

Finally, to give an indication of the change in the momentum

distribution as the density is varied, we have plotted in curve I
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of Pigure 2 results for P(K) as given by Daniel and Vosko for the
high density values (r & 2) and by (3.6) for the low density

region. Curve 2 for rs = 16 should be viewed with some caution,

but the result for r5 = 100 (curve 3) should represent a good

approximation. The great difficulty, as we have stressed, is to

obtain a sufficiently good approximation to the ground state in

the region 2 < r8 < 5.5 and to locate the critical value of re

with precision.

6. Stability of spin density waves in metals (with M. I. Darby and

W. H. Young)

We record here the final results of the calculations of

M. I. Darby, one of us (N.H.M.) and W. H. Young bearing on the

spin density waves of Overhauser (1960). The analysis was set

out in ASR No. I and more accurately (avoiding a sphere

approximation made earlier) in section 2 of TSR No. 4. However,

evaluation of the potential energy given in equation (3) of that

Report indicated that the term in a2 in the potential energy was

exceedingly small. Examination of the reasons for this led to

the use of an alternative variational function which proved much

more accurate.

Using the notation of ASR No. 1, the transformation function

was taken as having components

R= a si a x =1,2,3;) (6.1)Ri~ ~ ( = i + sn x 2P
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and then in place of equation (1) of TSR No. 4, we easily find

for the increase in the kinetic energy per particle:

AT a .05

N 4a 3% + (6.2)

where

Similarly the change in the potential energy per particle is

given by

AV 0324a2  (6.3)

Thus, the energy is lowered by allowing non-zero amplitude of

the spin-density waves when

X > 187

or r. = X >116. (6.4)

This appears to us to be fairly conclusive evidence that spin

density waves are not energetically favourable until the electron

density becomes very much lower than occurs in real metals. Charge

density waves may perhaps lower the energy at higher densities

however, (see, for example, Young, 1961).
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7. Proton lattice problem (with W. Jones)

We shall now give a brief account of some preliminary work

we have carried out on the non-uniform electron gas problem.

Whereas, in the Sommerfeld model, the 'natural' orbitals of the

theory are planu waves for all electron densities, in the case of

a periodic lattice, the 'natural' orbitals will vary with density.

This is an added complication, and has led us to investigate how

we should obtain the Bloch orbitals for a given density. This

seems possible at present only in the limits of high and low

density, and we shall restrict our discussion to these cases.

We should remark at this point that the ground-state energy of

an electron gas in a lattice of positive point charges has been

studied by Bellemans and do Leener (1961). These workers

expanded the grand partition function of the system in powers of

the coupling parameter between the electrons and the positive

point charges and between pairs of electrons. By summing

infinite series of divergent terms they were able to obtain

finite results for the energy per particle.

We have restricted ourselves up to the present to the

calculation of Dirac's matrix in the high-density limit. Thus,

we cannot expect to obtain an energy which includes the Gell-Mann-

Brueckner correlation energy, in contrast to Bellemans and

de Leener. However, we shall demonstrate that there is an

intimate connection between their approach and thnt given below.
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We shall work in a Hartreo approximation at first, and shall

write the periodic self-consistent potential V(r) in the form

iVW V -'E (7.1)
v( _) = ) V e ,(.)

-n

where the sn'S are reciprocal 'lattice vectors. We now make

use of the first-order equation of March and Murray (1961), which

we may write as

k 3 k 2 icZ ear- ei c.r J,(2kfr)

f f \r (72

YJ--

where the Fermi wave vector has magnitude kf and is related to

the Fermi energy 4 by kf2 = 2r. Now if the parameter X measures

the magnitude of the positive point charges at the lattice sites

Rn , then

V2 V(R) = 7 ( (r_ - - 4p

Rn

= e - xp, (7.3)

-6n

where 11 is the volume of a unit cell. Hence, substituting (7,1)

and (7.2) in (7.3) we may write
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2 nV ef xXi '. x
K7

-n -n

' K i _n 'Z_ / . g j ( 2 k f r ) d )
e Kv1 n e n  e • (7.4)

6-n

Hence, for 1-n 0 0, we have

li- I,- d (7.5)

N ow i n . _ J (2kfr ) I ei . r J (2kfr )

rf (r_ =kf) r

icn.r [sin 2kfr - 2kfr cos 2kfrl

= 7 J(kf, Kn) (7.6)

where

J(kf, Icn) = Knkf + (kf= -2 ') zn V2kf.
To begin our discussion of the total energy, we first

investigate the E(X) relation in the present approximation.

Thus, we write

E() = 7 e R , (7.8)
--n
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where

with the rule that the Hamiltonian H operates only on r and we

put r' = r before performing the integration. p(_', p) here

is the density matrbix for the filled band. After some

calculation we then find, writing

-) = -+ AE( ), (7.10)

that

IV lv2_ 2
A .(_) ,- " 2 k"(7.11)

In

where S is the volume of the Brillouin zone and km + .

To obtain the change in the sum of the uigenvalues we require

Fermi sphere

IL 12

,Bc -. 'Formi sphere km

(7.12)

The integral may be evaluated in terms of the function J(kf, Im)

defined earlier, and the result may be written

V . m 
(713)
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If we now insert the Fourier components of the unscreened lattice

charge into (7.12), that is we put

VI m*j (7.14)

we find, introducing u = cn/2kf,

T22U
= u + 17 ]. (715)

This, in fact, agrees with the last term in the energy as given

by Bellemans and de Leener, and means that their energy can be

written down directly by straightforward methods, without recourse

to their development of the grand partition function. Obviously,

our result (7.13) goes beyond their approximation if we insert

the correct Fourier components.

We finally note that in the low density limit, the hydrogen

atom wave functions must give bhe solution of the problem. Then

it follows that the momentum distribution function, which seems

of some importance in following the behaviour of the system as

the lattice parameter is varied, has the form

1(p) = 32 (7.16)

It would certainly be of interest to enquire what modifications

would occur in this function as the lattice parameter is now

decreased. Obviously, a better approximation than e-r to the
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localized orbitals is then required, and we are at present

considering ways of introducing perturbations having the correct

crystal symmetry in order to obtain the form of 1(p) away from

the.point at infinity.

8. Conclusion

For the Sommeirfcld model, the physical behaviour of the

systom in the two limiting cases rs B_ 0 and r- c is now well

established. If, as we believe, a transition occurs at a

critical density rc, then accurate location and description of

this is obviously of considerable interest and we are 3ontinuing

to examine this problem.

Less is known on the non-uniform gas problem particularly

in the low-density limit, and, as remarked above, we are

investigating crystalline field methods of developing (7.16)

for higher densities.
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Captions for Figures

Page

Figure 1 Pair functions for an electron gqs. 2:

Curve 1. Low density form for rs = 100.

Curve 2. Extrapolated low density form for re = 4.

Curve 3. Hartree-Fock pair function of eqn. (2.6),

correct in limit r8 -+ 0.

Figure 2 Momentum distribution in an electron gas. 22

Curve 1. Daniel and Vosko results for r8 = 2.

Curve 2. Low density form for rs = 16.

Curve 3. Low density form for r8 - 100.
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